Temporal and spatial modulation of chondrogenic foci in subchondral microdrill holes by chitosan-glycerol phosphate/blood implants.
نویسندگان
چکیده
OBJECTIVE Subchondral drilling initiates a cartilage repair response involving formation of chondrogenic foci in the subchondral compartment. The purpose of this study was to structurally characterize these sites of chondrogenesis and to investigate the effects of chitosan-glycerol phosphate (GP)/blood implants on their formation. METHOD Thirty-two New Zealand White rabbits received bilateral cartilage defects bearing four subchondral drill holes. One knee per rabbit was treated by solidifying a chitosan-GP/blood implant over the defect. After 1-56 days of repair, chondrogenic foci were characterized by histostaining and immunostaining. Collagen fiber orientation was characterized by polarized light microscopy. RESULTS Glycosaminoglycan and collagen type II were present throughout the foci while the upper zone expressed collagen type I and the lower zone collagen type X. Large chondrogenic foci had a stratified structure with flatter cells closer to the articular surface, and round or hypertrophic chondrocytes deeper in the drill holes that showed signs of calcification after 3 weeks of repair in control defects. Markers for pre-hypertrophic chondrocytes (Patched) and for proliferation (Ki-67) were detected within foci. Some cells displayed a columnar arrangement where collagen was vertically oriented. For treated defects, chondrogenic foci appeared 1-3 weeks later, foci were nascent and mature rather than resorbing, and foci developed closer to the articular surface. CONCLUSIONS Chondrogenic foci bear some similarities to growth cartilage and can give rise to a repair tissue that has similar zonal stratification as articular cartilage. The temporal and spatial formation of chondrogenic foci can be modulated by cartilage repair therapies.
منابع مشابه
Chitosan-glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects.
OBJECTIVE Marrow-stimulation techniques are used by surgeons to repair cartilage lesions although consistent regeneration of hyaline cartilage is rare. We have shown previously that autologous blood can be mixed with a polymer solution containing chitosan in a glycerol phosphate (GP) buffer (chitosan-GP), and that implantation of this polymer/blood composite onto marrow-stimulated chondral defe...
متن کاملAcute Osteoclast Activity following Subchondral Drilling Is Promoted by Chitosan and Associated with Improved Cartilage Repair Tissue Integration
OBJECTIVE Cartilage-bone integration is an important functional end point of cartilage repair therapy, but little is known about how to promote integration. We tested the hypothesis that chitosan-stabilized blood clot implant elicits osteoclasts to drilled cartilage defects and promotes repair and cartilage-bone integration. DESIGN Bilateral trochlear defects in 15 skeletally mature rabbit kn...
متن کاملBone-Induced Chondroinduction in Sheep Jamshidi Biopsy Defects with and without Treatment by Subchondral Chitosan-Blood Implant
OBJECTIVE Delivery of chitosan to subchondral bone is a novel approach for augmented marrow stimulation. We evaluated the effect of 3 presolidified chitosan-blood implant formulations on osteochondral repair progression compared with untreated defects. DESIGN In N = 5 adult sheep, six 2-mm diameter Jamshidi biopsy holes were created bilaterally in the medial femoral condyle and treated with p...
متن کاملSubchondral pre-solidified chitosan/blood implants elicit reproducible early osteochondral wound-repair responses including neutrophil and stromal cell chemotaxis, bone resorption and repair, enhanced repair tissue integration and delayed matrix deposition
BACKGROUND In this study we evaluated a novel approach to guide the bone marrow-driven articular cartilage repair response in skeletally aged rabbits. We hypothesized that dispersed chitosan particles implanted close to the bone marrow degrade in situ in a molecular mass-dependent manner, and attract more stromal cells to the site in aged rabbits compared to the blood clot in untreated controls...
متن کاملTreatment of Osteochondral Lesions of the Talus With Bone Marrow Stimulation and Chitosan-Glycerol Phosphate/Blood Implants (BST-CarGel).
Bone marrow stimulation (BMS) techniques represent the first-line treatment for unstable osteochondral lesions of the talus or after conservative treatment failure. These techniques are intended to penetrate the subchondral bone to elicit bleeding and allow precursor cells and cytokines from bone marrow to populate the lesion. However, the fibrocartilaginous repair tissue arising after marrow s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Osteoarthritis and cartilage
دوره 19 1 شماره
صفحات -
تاریخ انتشار 2011